Paper 4 , Section II, 11H

Number Theory
Part II, 2020

(a) What does it mean to say that a function f:NCf: \mathbb{N} \rightarrow \mathbb{C} is multiplicative? Show that if f,g:NCf, g: \mathbb{N} \rightarrow \mathbb{C} are both multiplicative, then so is fg:NCf \star g: \mathbb{N} \rightarrow \mathbb{C}, defined for all nNn \in \mathbb{N} by

fg(n)=dnf(d)g(nd)f \star g(n)=\sum_{d \mid n} f(d) g\left(\frac{n}{d}\right)

Show that if f=μgf=\mu \star g, where μ\mu is the Möbius function, then g=f1g=f \star 1, where 1 denotes the constant function 1 .

(b) Let τ(n)\tau(n) denote the number of positive divisors of nn. Find f,g:NCf, g: \mathbb{N} \rightarrow \mathbb{C} such that τ=fg\tau=f \star g, and deduce that τ\tau is multiplicative. Hence or otherwise show that for all sCs \in \mathbb{C} with Re(s)>1\operatorname{Re}(s)>1,

n=1τ(n)ns=ζ(s)2\sum_{n=1}^{\infty} \frac{\tau(n)}{n^{s}}=\zeta(s)^{2}

where ζ\zeta is the Riemann zeta function.

(c) Fix kNk \in \mathbb{N}. By considering suitable powers of the product of the first k+1k+1 primes, show that

τ(n)(logn)k\tau(n) \geqslant(\log n)^{k}

for infinitely many nNn \in \mathbb{N}.

(d) Fix ϵ>0\epsilon>0. Show that

τ(n)nϵ=p prime, pαn(α+1)pαϵ\frac{\tau(n)}{n^{\epsilon}}=\prod_{p \text { prime, } p^{\alpha}|| n} \frac{(\alpha+1)}{p^{\alpha \epsilon}}

where pαnp^{\alpha} \| n denotes the fact that αN\alpha \in \mathbb{N} is such that pαnp^{\alpha} \mid n but pα+1np^{\alpha+1} \nmid n. Deduce that there exists a positive constant C(ϵ)C(\epsilon) depending only on ϵ\epsilon such that for all nN,τ(n)C(ϵ)nϵ.n \in \mathbb{N}, \tau(n) \leqslant C(\epsilon) n^{\epsilon} .