Paper 1, Section II, C

Applications of Quantum Mechanics
Part II, 2020

Consider the quantum mechanical scattering of a particle of mass mm in one dimension off a parity-symmetric potential, V(x)=V(x)V(x)=V(-x). State the constraints imposed by parity, unitarity and their combination on the components of the SS-matrix in the parity basis,

S=(S++S+S+S)S=\left(\begin{array}{cc} S_{++} & S_{+-} \\ S_{-+} & S_{--} \end{array}\right)

For the specific potential

V=2U02m[δD(x+a)+δD(xa)]V=\hbar^{2} \frac{U_{0}}{2 m}\left[\delta_{D}(x+a)+\delta_{D}(x-a)\right]

show that

S=ei2ka[(2kiU0)eika+iU0eika(2k+iU0)eikaiU0eika]S_{--}=e^{-i 2 k a}\left[\frac{\left(2 k-i U_{0}\right) e^{i k a}+i U_{0} e^{-i k a}}{\left(2 k+i U_{0}\right) e^{-i k a}-i U_{0} e^{i k a}}\right]

For U0<0U_{0}<0, derive the condition for the existence of an odd-parity bound state. For U0>0U_{0}>0 and to leading order in U0a1U_{0} a \gg 1, show that an odd-parity resonance exists and discuss how it evolves in time.