Paper 2, Section II, A
(a) Consider the Hamiltonian , where is time-independent and non-degenerate. The system is prepared to be in some state at time , where is an orthonormal basis of eigenstates of . Derive an expression for the state at time , correct to first order in , giving your answer in the interaction picture.
(b) An atom is modelled as a two-state system, where the excited state has energy above that of the ground state . The atom interacts with an electromagnetic field, modelled as a harmonic oscillator of frequency . The Hamiltonian is , where
is the Hamiltonian in the absence of interactions and
describes the coupling between the atom and the field.
(i) Interpret each of the two terms in . What value must the constant take for time evolution to be unitary?
(ii) At the atom is in state while the field is described by the (normalized) state of the oscillator. Calculate the probability that at time the atom will be in its excited state and the field will be described by the excited state of the oscillator. Give your answer to first non-trivial order in perturbation theory. Show that this probability vanishes when .