Paper 2, Section II, J

Principles of Statistics
Part II, 2020

Consider X1,,XnX_{1}, \ldots, X_{n} from a N(μ,σ2)N\left(\mu, \sigma^{2}\right) distribution with parameter θ=(μ,σ2)\theta=\left(\mu, \sigma^{2}\right) \in Θ=R×(0,)\Theta=\mathbb{R} \times(0, \infty). Derive the likelihood ratio test statistic Λn(Θ,Θ0)\Lambda_{n}\left(\Theta, \Theta_{0}\right) for the composite hypothesis

H0:σ2=1 vs. H1:σ21H_{0}: \sigma^{2}=1 \text { vs. } H_{1}: \sigma^{2} \neq 1

where Θ0={(μ,1):μR}\Theta_{0}=\{(\mu, 1): \mu \in \mathbb{R}\} is the parameter space constrained by H0H_{0}.

Prove carefully that

Λn(Θ,Θ0)dχ12 as n\Lambda_{n}\left(\Theta, \Theta_{0}\right) \rightarrow^{d} \chi_{1}^{2} \quad \text { as } n \rightarrow \infty

where χ12\chi_{1}^{2} is a Chi-Square distribution with one degree of freedom.