Paper 1, Section I, 10C
Part II, 2020
Suppose we measure an observable on a qubit, where is a unit vector and is the vector of Pauli operators.
(i) Express as a matrix in terms of the components of .
(ii) Representing in terms of spherical polar coordinates as , rewrite the above matrix in terms of the angles and .
(iii) What are the possible outcomes of the above measurement?
(iv) Suppose the qubit is initially in a state . What is the probability of getting an outcome 1?
(v) Consider the three-qubit state
Suppose the second qubit is measured relative to the computational basis. What is the probability of getting an outcome 1? State the rule that you are using.