Paper 2, Section I, 10C

Quantum Information and Computation
Part II, 2020

Consider the set of states

βzx:=12[0x+(1)z1xˉ],\left|\beta_{z x}\right\rangle:=\frac{1}{\sqrt{2}}\left[|0 x\rangle+(-1)^{z}|1 \bar{x}\rangle\right],

where x,z{0,1}x, z \in\{0,1\} and xˉ=x1\bar{x}=x \oplus 1 (addition modulo 2 ).

(i) Show that

(HI)CXβzx=zxz,x{0,1},(H \otimes \mathbb{I}) \circ \mathrm{CX}\left|\beta_{z x}\right\rangle=|z x\rangle \quad \forall z, x \in\{0,1\},

where HH denotes the Hadamard gate and CX denotes the controlled- XX gate.

(ii) Show that for any z,x{0,1}z, x \in\{0,1\},

(ZzXxI)β00=βzx.\left(Z^{z} X^{x} \otimes \mathbb{I}\right)\left|\beta_{00}\right\rangle=\left|\beta_{z x}\right\rangle .

[Hint: For any unitary operator UU, we have (UI)β00=(IUT)β00(U \otimes \mathbb{I})\left|\beta_{00}\right\rangle=\left(\mathbb{I} \otimes U^{T}\right)\left|\beta_{00}\right\rangle, where UTU^{T} denotes the transpose of UU with respect to the computational basis.]

(iii) Suppose Alice and Bob initially share the state β00\left|\beta_{00}\right\rangle. Show using (*) how Alice can communicate two classical bits to Bob by sending him only a single qubit.