Paper 3, Section I, 10C10 C

Quantum Information and Computation
Part II, 2020

For ϕ[0,2π)\phi \in[0,2 \pi) and ψC4|\psi\rangle \in \mathbb{C}^{4} consider the operator

Rψϕ=I(1eiϕ)ψψR_{\psi}^{\phi}=\mathbb{I}-\left(1-e^{i \phi}\right)|\psi\rangle\langle\psi|

Let UU be a unitary operator on C4=C2C2\mathbb{C}^{4}=\mathbb{C}^{2} \otimes \mathbb{C}^{2} with action on 00|00\rangle given as follows

U00=pg+1pb=:ψinU|00\rangle=\sqrt{p}|g\rangle+\sqrt{1-p}|b\rangle=:\left|\psi_{\mathrm{in}}\right\rangle

where pp is a constant in [0,1][0,1] and g,bC4|g\rangle,|b\rangle \in \mathbb{C}^{4} are orthonormal states.

(i) Give an explicit expression of the state RgϕU00R_{g}^{\phi} U|00\rangle.

(ii) Find a ψC4|\psi\rangle \in \mathbb{C}^{4} for which Rψπ=UR00πUR_{\psi}^{\pi}=U R_{00}^{\pi} U^{\dagger}.

(iii) Choosing p=1/4p=1 / 4 in equation ( \dagger, calculate the state UR00πURgϕU00U R_{00}^{\pi} U^{\dagger} R_{g}^{\phi} U|00\rangle. For what choice of ϕ[0,2π)\phi \in[0,2 \pi) is this state proportional to g|g\rangle ?

(iv) Describe how the above considerations can be used to find a marked element gg in a list of four items {g,b1,b2,b3}\left\{g, b_{1}, b_{2}, b_{3}\right\}. Assume that you have the state 00|00\rangle and can act on it with a unitary operator that prepares the uniform superposition of four orthonormal basis states g,b1,b2,b3|g\rangle,\left|b_{1}\right\rangle,\left|b_{2}\right\rangle,\left|b_{3}\right\rangle of C4\mathbb{C}^{4}. [You may use the operators UU (defined in (†)), UU^{\dagger} and RψϕR_{\psi}^{\phi} for any choice of ϕ[0,2π)\phi \in[0,2 \pi) and any ψC4|\psi\rangle \in \mathbb{C}^{4}.]