Paper 4, Section I, C

Quantum Information and Computation
Part II, 2020

(i) What is the action of QFTN\mathrm{QFT}_{N} on a state x|x\rangle, where x{0,1,2,,N1}x \in\{0,1,2, \ldots, N-1\} and QFTN\mathrm{QFT}_{N} denotes the Quantum Fourier Transform modulo NN ?

(ii) For the case N=4N=4 write 0,1,2,30,1,2,3 respectively in binary as 00,01,10,1100,01,10,11 thereby identifying the four-dimensional space as that of two qubits. Show that QFTN10\mathrm{QFT}_{N}|10\rangle is an unentangled state of the two qubits.

(iii) Prove that (QFTN)2x=Nx\left(\mathrm{QFT}_{N}\right)^{2}|x\rangle=|N-x\rangle, where (QFTN)2QFTNQFTN\left(\mathrm{QFT}_{N}\right)^{2} \equiv \mathrm{QFT}_{N} \circ \mathrm{QFT}_{N}.

[Hint: For ω=e2πi/N,m=0N1ωmK=0\omega=e^{2 \pi i / N}, \sum_{m=0}^{N-1} \omega^{m K}=0 if KK is not a multiple of NN.]

(iv) What is the action of (QFTN)4\left(\mathrm{QFT}_{N}\right)^{4} on a state x|x\rangle, for any x{0,1,2,,N1}x \in\{0,1,2, \ldots, N-1\} ? Use the above to determine what the eigenvalues of QFTN\mathrm{QFT}_{N} are.