Paper 3, Section II, C

Applications of Quantum Mechanics
Part II, 2020

(a) For the quantum scattering of a beam of particles in three dimensions off a spherically symmetric potential V(r)V(r) that vanishes at large rr, discuss the boundary conditions satisfied by the wavefunction ψ\psi and define the scattering amplitude f(θ)f(\theta). Assuming the asymptotic form

ψ=l=02l+12ik[(1)l+1eikrr+(1+2ifl)eikrr]Pl(cosθ),\psi=\sum_{l=0}^{\infty} \frac{2 l+1}{2 i k}\left[(-1)^{l+1} \frac{e^{-i k r}}{r}+\left(1+2 i f_{l}\right) \frac{e^{i k r}}{r}\right] P_{l}(\cos \theta),

state the constraints on flf_{l} imposed by the unitarity of the SS-matrix and define the phase shifts δl\delta_{l}.

(b) For V0>0V_{0}>0, consider the specific potential

V(r)={,raV0,a<r2a0,r>2aV(r)=\left\{\begin{array}{lc} \infty, & r \leqslant a \\ -V_{0}, & a<r \leqslant 2 a \\ 0, & r>2 a \end{array}\right.

(i) Show that the s-wave phase shift δ0\delta_{0} obeys

tan(δ0)=kcos(2ka)κcot(κa)sin(2ka)ksin(2ka)+κcot(κa)cos(2ka),\tan \left(\delta_{0}\right)=\frac{k \cos (2 k a)-\kappa \cot (\kappa a) \sin (2 k a)}{k \sin (2 k a)+\kappa \cot (\kappa a) \cos (2 k a)},

where κ2=k2+2mV0/2\kappa^{2}=k^{2}+2 m V_{0} / \hbar^{2}.

(ii) Compute the scattering length asa_{s} and find for which values of κ\kappa it diverges. Discuss briefly the physical interpretation of the divergences. [Hint: you may find this trigonometric identity useful

tan(A+B)=tanA+tanB1tanAtanB.]\left.\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B} .\right]