Paper 4, Section II, H

Topics in Analysis
Part II, 2020

(a) State Liouville's theorem on the approximation of algebraic numbers by rationals.

(b) Let (an)n=0\left(a_{n}\right)_{n=0}^{\infty} be a sequence of positive integers and let

α=a0+1a1+1a2+1a3+\alpha=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\ldots}}}

be the value of the associated continued fraction.

(i) Prove that the nnth convergent pn/qnp_{n} / q_{n} satisfies

αpnqnαpq\left|\alpha-\frac{p_{n}}{q_{n}}\right| \leqslant\left|\alpha-\frac{p}{q}\right|

for all the rational numbers pq\frac{p}{q} such that 0<qqn0<q \leqslant q_{n}.

(ii) Show that if the sequence (an)\left(a_{n}\right) is bounded, then one can choose c>0c>0 (depending only on α\alpha ), so that for every rational number ab\frac{a}{b},

αab>cb2\left|\alpha-\frac{a}{b}\right|>\frac{c}{b^{2}}

(iii) Show that if the sequence (an)\left(a_{n}\right) is unbounded, then for each c>0c>0 there exist infinitely many rational numbers ab\frac{a}{b} such that

αab<cb2\left|\alpha-\frac{a}{b}\right|<\frac{c}{b^{2}}

[You may assume without proof the relation

(pn+1pnqn+1qn)=(pnpn1qnqn+1)(an+1110),n=1,2,.]\left.\left(\begin{array}{ll} p_{n+1} & p_{n} \\ q_{n+1} & q_{n} \end{array}\right)=\left(\begin{array}{cc} p_{n} & p_{n-1} \\ q_{n} & q_{n+1} \end{array}\right)\left(\begin{array}{cc} a_{n+1} & 1 \\ 1 & 0 \end{array}\right), \quad n=1,2, \ldots .\right]