Paper 3, Section II, B

Waves
Part II, 2020

The dispersion relation for capillary waves on the surface of deep water is

ω2=S2k3\omega^{2}=S^{2}|k|^{3}

where S=(T/ρ)1/2,ρS=(T / \rho)^{1 / 2}, \rho is the density and TT is the coefficient of surface tension. The free surface z=η(x,t)z=\eta(x, t) is undisturbed for t<0t<0, when it is suddenly impacted by an object, giving the initial conditions at time t=0t=0 :

η=0 and ηt={W,x<ϵ0,x>ϵ\eta=0 \quad \text { and } \quad \frac{\partial \eta}{\partial t}= \begin{cases}-W, & |x|<\epsilon \\ 0, & |x|>\epsilon\end{cases}

where WW is a constant.

(i) Use Fourier analysis to find an integral expression for η(x,t)\eta(x, t) when t>0t>0.

(ii) Use the method of stationary phase to find the asymptotic behaviour of η(Vt,t)\eta(V t, t) for fixed V>0V>0 as tt \rightarrow \infty, for the case Vϵ1/2SV \ll \epsilon^{-1 / 2} S. Show that the result can be written in the form

η(x,t)WϵSt2x5/2F(x3S2t2)\eta(x, t) \sim \frac{W \epsilon S t^{2}}{x^{5 / 2}} F\left(\frac{x^{3}}{S^{2} t^{2}}\right)

and determine the function FF.

(iii) Give a brief physical interpretation of the link between the condition ϵV2/S2\epsilon V^{2} / S^{2} \ll 1 and the simple dependence on the product WϵW \epsilon.

[You are given that e±iau2du=(π/a)1/2e±iπ/4\int_{-\infty}^{\infty} e^{\pm i a u^{2}} d u=(\pi / a)^{1 / 2} e^{\pm i \pi / 4} \quad for a>0.a>0 . ]