Paper 2, Section II, B
A symmetric top of mass rotates about a fixed point that is a distance from the centre of mass along the axis of symmetry; its principal moments of inertia about the fixed point are and . The Lagrangian of the top is
(i) Draw a diagram explaining the meaning of the Euler angles and .
(ii) Derive expressions for the three integrals of motion and .
(iii) Show that the nutational motion is governed by the equation
and derive expressions for the effective potential and the modified energy in terms of and .
(iv) Suppose that
where is a small positive number. By expanding to second order in and , show that there is a stable equilibrium solution with , provided that . Determine the equilibrium value of and the precession rate , to the same level of approximation.