Paper 1, Section II, 21F21 \mathbf{F}

Algebraic Topology
Part II, 2020

Let p:R2S1×S1=:Xp: \mathbb{R}^{2} \rightarrow S^{1} \times S^{1}=: X be the map given by

p(r1,r2)=(e2πir1,e2πir2)p\left(r_{1}, r_{2}\right)=\left(e^{2 \pi i r_{1}}, e^{2 \pi i r_{2}}\right)

where S1S^{1} is identified with the unit circle in C\mathbb{C}. [You may take as given that pp is a covering map.]

(a) Using the covering map pp, show that π1(X,x0)\pi_{1}\left(X, x_{0}\right) is isomorphic to Z2\mathbb{Z}^{2} as a group, where x0=(1,1)Xx_{0}=(1,1) \in X.

(b) Let GL2(Z)\mathrm{GL}_{2}(\mathbb{Z}) denote the group of 2×22 \times 2 matrices AA with integer entries such that detA=±1\operatorname{det} A=\pm 1. If AGL2(Z)A \in \mathrm{GL}_{2}(\mathbb{Z}), we obtain a linear transformation A:R2R2A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}. Show that this linear transformation induces a homeomorphism fA:XXf_{A}: X \rightarrow X with fA(x0)=x0f_{A}\left(x_{0}\right)=x_{0} and such that fA:π1(X,x0)π1(X,x0)f_{A *}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right) agrees with AA as a map Z2Z2\mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}.

(c) Let pi:X^iXp_{i}: \widehat{X}_{i} \rightarrow X for i=1,2i=1,2 be connected covering maps of degree 2 . Show that there exist homeomorphisms ϕ:X^1X^2\phi: \widehat{X}_{1} \rightarrow \widehat{X}_{2} and ψ:XX\psi: X \rightarrow X so that the diagram

is commutative.