Paper 3, Section I, D

Cosmology
Part II, 2020

At temperature TT, with β=1/(kBT)\beta=1 /\left(k_{B} T\right), the distribution of ultra-relativistic particles with momentum p\mathbf{p} is given by

n(p)=1eβpc1,n(\mathbf{p})=\frac{1}{e^{\beta p c} \mp 1},

where the minus sign is for bosons and the plus sign\operatorname{sign} for fermions, and with p=pp=|\mathbf{p}|.

Show that the total number of fermions, nfn_{\mathrm{f}}, is related to the total number of bosons, nbn_{\mathrm{b}}, by nf=34nbn_{\mathrm{f}}=\frac{3}{4} n_{\mathrm{b}}.

Show that the total energy density of fermions, ρf\rho_{\mathrm{f}}, is related to the total energy density of bosons, ρb\rho_{\mathrm{b}}, by ρf=78ρb\rho_{\mathrm{f}}=\frac{7}{8} \rho_{\mathrm{b}}.