Paper 4 , Section I, D

Cosmology
Part II, 2020

At temperature TT and chemical potential μ\mu, the number density of a non-relativistic particle species with mass mkBT/c2m \gg k_{B} T / c^{2} is given by

n=g(mkBT2π2)3/2e(mc2μ)/kBT,n=g\left(\frac{m k_{B} T}{2 \pi \hbar^{2}}\right)^{3 / 2} e^{-\left(m c^{2}-\mu\right) / k_{B} T},

where gg is the number of degrees of freedom of this particle.

At recombination, electrons and protons combine to form hydrogen. Use the result above to derive the Saha equation

nHne2(2π2mekBT)3/2eEbind/kBTn_{H} \approx n_{e}^{2}\left(\frac{2 \pi \hbar^{2}}{m_{e} k_{B} T}\right)^{3 / 2} e^{E_{\mathrm{bind}} / k_{B} T}

where nHn_{H} is the number density of hydrogen atoms, nen_{e} the number density of electrons, mem_{e} the mass of the electron and Ebind E_{\text {bind }} the binding energy of hydrogen. State any assumptions that you use in this derivation.