Paper 1, Section II, I
(a) Let be a manifold. Give the definition of the tangent space of at a point .
(b) Show that defines a submanifold of and identify explicitly its tangent space for any .
(c) Consider the matrix group consisting of all matrices satisfying
where is the diagonal matrix .
(i) Show that forms a group under matrix multiplication, i.e. it is closed under multiplication and every element in has an inverse in .
(ii) Show that defines a 6-dimensional manifold. Identify the tangent space for any as a set where ranges over a linear subspace which you should identify explicitly.
(iii) Let be as defined in (b) above. Show that defined as the set of all such that for all is both a subgroup and a submanifold of full dimension.
[You may use without proof standard theorems from the course concerning regular values and transversality.]