Paper 3, Section II, I

Differential Geometry
Part II, 2020

(a) Show that for a compact regular surface SR3S \subset \mathbb{R}^{3}, there exists a point pSp \in S such that K(p)>0K(p)>0, where KK denotes the Gaussian curvature. Show that if SS is contained in a closed ball of radius RR in R3\mathbb{R}^{3}, then there is a point pp such that K(p)R2K(p) \geqslant R^{-2}.

(b) For a regular surface SR3S \subset \mathbb{R}^{3}, give the definition of a geodesic polar coordinate system at a point pSp \in S. Show that in such a coordinate system, limr0G(r,θ)=0\lim _{r \rightarrow 0} G(r, \theta)=0, limr0(G)r(r,θ)=1,E(r,θ)=1\lim _{r \rightarrow 0}(\sqrt{G})_{r}(r, \theta)=1, E(r, \theta)=1 and F(r,θ)=0F(r, \theta)=0. [You may use without proof standard properties of the exponential map provided you state them clearly.]

(c) Let SR3S \subset \mathbb{R}^{3} be a regular surface. Show that if K0K \leqslant 0, then any geodesic polar coordinate ball B(p,ϵ0)SB\left(p, \epsilon_{0}\right) \subset S of radius ϵ0\epsilon_{0} around pp has area satisfying

 Area B(p,ϵ0)πϵ02\text { Area } B\left(p, \epsilon_{0}\right) \geqslant \pi \epsilon_{0}^{2}

[You may use without proof the identity (G)rr(r,θ)=GK(\sqrt{G})_{r r}(r, \theta)=-\sqrt{G} K.]

(d) Let SR3S \subset \mathbb{R}^{3} be a regular surface, and now suppose <KC-\infty<K \leqslant C for some constant 0<C<0<C<\infty. Given any constant 0<γ<10<\gamma<1, show that there exists ϵ0>0\epsilon_{0}>0, depending only on CC and γ\gamma, so that if B(p,ϵ)SB(p, \epsilon) \subset S is any geodesic polar coordinate ball of radius ϵϵ0\epsilon \leqslant \epsilon_{0}, then

 Area B(p,ϵ)γπϵ2\text { Area } B(p, \epsilon) \geqslant \gamma \pi \epsilon^{2}

[Hint: For any fixed θ0\theta_{0}, consider the function f(r):=G(r,θ0)αsin(Cr)f(r):=\sqrt{G}\left(r, \theta_{0}\right)-\alpha \sin (\sqrt{C} r), for all 0<0< α<1C\alpha<\frac{1}{\sqrt{C}}. Derive the relation fCff^{\prime \prime} \geqslant-C f and show f(r)>0f(r)>0 for an appropriate range of r.r . The following variant of Wirtinger's inequality may be useful and can be assumed without proof: if gg is a C1C^{1} function on [0,L][0, L] vanishing at 0 , then 0Lg(x)2dxL2π0Lg(x)2dx\int_{0}^{L}|g(x)|^{2} d x \leqslant \frac{L}{2 \pi} \int_{0}^{L}\left|g^{\prime}(x)\right|^{2} d x.]