Paper 3, Section II, D

Electrodynamics
Part II, 2020

The Maxwell stress tensor σ\sigma of the electromagnetic fields is a two-index Cartesian tensor with components

σij=ϵ0(EiEj12E2δij)1μ0(BiBj12B2δij)\sigma_{i j}=-\epsilon_{0}\left(E_{i} E_{j}-\frac{1}{2}|\mathbf{E}|^{2} \delta_{i j}\right)-\frac{1}{\mu_{0}}\left(B_{i} B_{j}-\frac{1}{2}|\mathbf{B}|^{2} \delta_{i j}\right)

where i,j=1,2,3i, j=1,2,3, and EiE_{i} and BiB_{i} denote the Cartesian components of the electric and magnetic fields E(x,t)\mathbf{E}(\mathbf{x}, t) and B(x,t)\mathbf{B}(\mathbf{x}, t) respectively.

(i) Consider an electromagnetic field sourced by charge and current densities denoted by ρ(x,t)\rho(\mathbf{x}, t) and J(x,t)\mathbf{J}(\mathbf{x}, t) respectively. Using Maxwell's equations and the Lorentz force law, show that the components of σ\sigma obey the equation

j=13σijxj+git=(ρE+J×B)i\sum_{j=1}^{3} \frac{\partial \sigma_{i j}}{\partial x_{j}}+\frac{\partial g_{i}}{\partial t}=-(\rho \mathbf{E}+\mathbf{J} \times \mathbf{B})_{i}

where gig_{i}, for i=1,2,3i=1,2,3, are the components of a vector field g(x,t)\mathbf{g}(\mathbf{x}, t) which you should give explicitly in terms of E\mathbf{E} and B\mathbf{B}. Explain the physical interpretation of this equation and of the quantities σ\sigma and g\mathbf{g}.

(ii) A localised source near the origin, x=0\mathbf{x}=0, emits electromagnetic radiation. Far from the source, the resulting electric and magnetic fields can be approximated as

B(x,t)B0(x)sin(ωtkx),E(x,t)E0(x)sin(ωtkx)\mathbf{B}(\mathbf{x}, t) \simeq \mathbf{B}_{0}(\mathbf{x}) \sin (\omega t-\mathbf{k} \cdot \mathbf{x}), \quad \mathbf{E}(\mathbf{x}, t) \simeq \mathbf{E}_{0}(\mathbf{x}) \sin (\omega t-\mathbf{k} \cdot \mathbf{x})

where B0(x)=μ0ω24πrcx^×p0\mathbf{B}_{0}(\mathbf{x})=\frac{\mu_{0} \omega^{2}}{4 \pi r c} \hat{\mathbf{x}} \times \mathbf{p}_{0} and E0(x)=cx^×B0(x)\mathbf{E}_{0}(\mathbf{x})=-c \hat{\mathbf{x}} \times \mathbf{B}_{0}(\mathbf{x}) with r=xr=|\mathbf{x}| and x^=x/r\hat{\mathbf{x}}=\mathbf{x} / r. Here, k=(ω/c)x^\mathbf{k}=(\omega / c) \hat{\mathbf{x}} and p0\mathbf{p}_{0} is a constant vector.

Calculate the pressure exerted by these fields on a spherical shell of very large radius RR centred on the origin. [You may assume that E\mathbf{E} and B\mathbf{B} vanish for r>Rr>R and that the shell material is absorbant, i.e. no reflected wave is generated.]