Paper 4 , Section II, 36D

Electrodynamics
Part II, 2020

(a) A dielectric medium exhibits a linear response if the electric displacement D(x,t)\mathbf{D}(\mathbf{x}, t) and magnetizing field H(x,t)\mathbf{H}(\mathbf{x}, t) are related to the electric and magnetic fields, E(x,t)\mathbf{E}(\mathbf{x}, t) and B(x,t)\mathbf{B}(\mathbf{x}, t), as

D=ϵE,B=μH\mathbf{D}=\epsilon \mathbf{E}, \quad \mathbf{B}=\mu \mathbf{H}

where ϵ\epsilon and μ\mu are constants characterising the electric and magnetic polarisability of the material respectively. Write down the Maxwell equations obeyed by the fields D,H,B\mathbf{D}, \mathbf{H}, \mathbf{B} and E\mathbf{E} in this medium in the absence of free charges or currents.

(b) Two such media with constants ϵ\epsilon_{-}and ϵ+\epsilon_{+}(but the same μ\mu ) fill the regions x<0x<0 and x>0x>0 respectively in three-dimensions with Cartesian coordinates (x,y,z)(x, y, z).

(i) Starting from Maxwell's equations, derive the appropriate boundary conditions at x=0x=0 for a time-independent electric field E(x)\mathbf{E}(\mathbf{x}).

(ii) Consider a candidate solution of Maxwell's equations describing the reflection and transmission of an incident electromagnetic wave of wave vector kI\mathbf{k}_{I} and angular frequency ωI\omega_{I} off the interface at x=0x=0. The electric field is given as,

E(x,t)={X=I,RIm[EXexp(ikXxiωXt)],x<0Im[ETexp(ikTxiωTt)],x>0\mathbf{E}(\mathbf{x}, t)=\left\{\begin{array}{cc} \sum_{X=I, R} \operatorname{Im}\left[\mathbf{E}_{X} \exp \left(i \mathbf{k}_{X} \cdot \mathbf{x}-i \omega_{X} t\right)\right], & x<0 \\ \operatorname{Im}\left[\mathbf{E}_{T} \exp \left(i \mathbf{k}_{T} \cdot \mathbf{x}-i \omega_{T} t\right)\right], & x>0 \end{array}\right.

where EI,ER\mathbf{E}_{I}, \mathbf{E}_{R} and ET\mathbf{E}_{T} are constant real vectors and Im[z]\operatorname{Im}[z] denotes the imaginary part of a complex number zz. Give conditions on the parameters EX,kX,ωX\mathbf{E}_{X}, \mathbf{k}_{X}, \omega_{X} for X=I,R,TX=I, R, T, such that the above expression for the electric field E(x,t)\mathbf{E}(\mathbf{x}, t) solves Maxwell's equations for all x0x \neq 0, together with an appropriate magnetic field B(x,t)\mathbf{B}(\mathbf{x}, t) which you should determine.

(iii) We now parametrize the incident wave vector as kI=kI(cos(θI)i^x+sin(θI)i^z)\mathbf{k}_{I}=k_{I}\left(\cos \left(\theta_{I}\right) \hat{\mathbf{i}}_{x}+\sin \left(\theta_{I}\right) \hat{\mathbf{i}}_{z}\right), where i^x\hat{\mathbf{i}}_{x} and i^z\hat{\mathbf{i}}_{z} are unit vectors in the xx - and zz-directions respectively, and choose the incident polarisation vector to satisfy EIi^x=0\mathbf{E}_{I} \cdot \hat{\mathbf{i}}_{x}=0. By imposing appropriate boundary conditions for E(x,t)\mathbf{E}(\mathbf{x}, t) at x=0x=0, which you may assume to be the same as those for the time-independent case considered above, determine the Cartesian components of the wavevector kT\mathbf{k}_{T} as functions of kI,θI,ϵ+k_{I}, \theta_{I}, \epsilon_{+}and ϵ\epsilon_{-}.

(iv) For ϵ+<ϵ\epsilon_{+}<\epsilon_{-}find a critical value θIcr \theta_{I}^{\text {cr }} of the angle of incidence θI\theta_{I} above which there is no real solution for the wavevector kT\mathbf{k}_{T}. Write down a solution for E(x,t)\mathbf{E}(\mathbf{x}, t) when θI>θIcr\theta_{I}>\theta_{I}^{\mathrm{cr}} and comment on its form.