Paper 1, Section II, 39B
A viscous fluid is confined between an inner, impermeable cylinder of radius with centre at and another outer, impermeable cylinder of radius with centre at (so they touch at the origin and both have their axes in the direction). The inner cylinder rotates about its axis with angular velocity and the outer cylinder rotates about its axis with angular velocity . The fluid motion is two-dimensional and slow enough that the Stokes approximation is appropriate.
(i) Show that the boundary of the inner cylinder is described by the relationship
where are the usual polar coordinates centred on . Show also that on this cylinder the boundary condition on the tangential velocity can be written as
where and are the components of the velocity in the and directions respectively. Explain why the boundary condition (where is the streamfunction such that and can be imposed.
(ii) Write down the boundary conditions to be satisfied on the outer cylinder , explaining carefully why can also be imposed on this cylinder as well.
(iii) It is given that the streamfunction is of the form
where and are constants, which satisfies . Using the fact that due to the symmetry of the problem, show that the streamfunction is
where the constant is to be found.
(iv) Sketch the streamline pattern between the cylinders and determine the coordinates of the stagnation point in the flow.