Paper 3, Section II, 20F

Algebraic Topology
Part II, 2020

Let KK be a simplicial complex with four vertices v1,,v4v_{1}, \ldots, v_{4} with simplices v1,v2,v3\left\langle v_{1}, v_{2}, v_{3}\right\rangle, v1,v4\left\langle v_{1}, v_{4}\right\rangle and v2,v4\left\langle v_{2}, v_{4}\right\rangle and their faces.

(a) Draw a picture of K|K|, labelling the vertices.

(b) Using the definition of homology, calculate Hn(K)H_{n}(K) for all nn.

(c) Let LL be the subcomplex of KK consisting of the vertices v1,v2,v4v_{1}, v_{2}, v_{4} and the 1 simplices v1,v2,v1,v4,v2,v4\left\langle v_{1}, v_{2}\right\rangle,\left\langle v_{1}, v_{4}\right\rangle,\left\langle v_{2}, v_{4}\right\rangle. Let i:LKi: L \rightarrow K be the inclusion. Construct a simplicial mapj:KL\operatorname{map} j: K \rightarrow L such that the topological realisation j|j| of jj is a homotopy inverse to i|i|. Construct an explicit chain homotopy h:C(K)C(K)h: C_{\bullet}(K) \rightarrow C_{\bullet}(K) between iji_{\bullet} \circ j_{\bullet} and idC(K)\mathrm{id}_{C_{\bullet}(K)}, and verify that hh is a chain homotopy.