Paper 3, Section I, E

Further Complex Methods
Part II, 2020

The Weierstrass elliptic function is defined by

P(z)=1z2+m,n[1(zωm,n)21ωm,n2]\mathcal{P}(z)=\frac{1}{z^{2}}+\sum_{m, n}\left[\frac{1}{\left(z-\omega_{m, n}\right)^{2}}-\frac{1}{\omega_{m, n^{2}}}\right]

where ωm,n=mω1+nω2\omega_{m, n}=m \omega_{1}+n \omega_{2}, with non-zero periods (ω1,ω2)\left(\omega_{1}, \omega_{2}\right) such that ω1/ω2\omega_{1} / \omega_{2} is not real, and where (m,n)(m, n) are integers not both zero.

(i) Show that, in a neighbourhood of z=0z=0,

P(z)=1z2+120g2z2+128g3z4+O(z6)\mathcal{P}(z)=\frac{1}{z^{2}}+\frac{1}{20} g_{2} z^{2}+\frac{1}{28} g_{3} z^{4}+O\left(z^{6}\right)

where

g2=60m,n(ωm,n)4,g3=140m,n(ωm,n)6g_{2}=60 \sum_{m, n}\left(\omega_{m, n}\right)^{-4}, \quad g_{3}=140 \sum_{m, n}\left(\omega_{m, n}\right)^{-6}

(ii) Deduce that P\mathcal{P} satisfies

(dPdz)2=4P3g2Pg3\left(\frac{d \mathcal{P}}{d z}\right)^{2}=4 \mathcal{P}^{3}-g_{2} \mathcal{P}-g_{3}