Paper 4 , Section II, 21F
In this question, you may assume all spaces involved are triangulable.
(a) (i) State and prove the Mayer-Vietoris theorem. [You may assume the theorem that states that a short exact sequence of chain complexes gives rise to a long exact sequence of homology groups.]
(ii) Use Mayer-Vietoris to calculate the homology groups of an oriented surface of genus .
(b) Let be an oriented surface of genus , and let be a collection of mutually disjoint closed subsets of with each homeomorphic to a two-dimensional disk. Let denote the interior of , homeomorphic to an open two-dimensional disk, and let
Show that
(c) Let be the surface given in (b) when and . Let be a map. Does there exist a map such that is homotopic to the identity map? Justify your answer.