Paper 4, Section II, 18G
Part II, 2020
(a) Let be a field. Define the discriminant of a polynomial , and explain why it is in , carefully stating any theorems you use.
Compute the discriminant of .
(b) Let be a field and let be a quartic polynomial with roots such that .
Define the resolvant cubic of .
Suppose that is a square in . Prove that the resolvant cubic is irreducible if and only if . Determine the possible Galois groups Gal if is reducible.
The resolvant cubic of is . Using this, or otherwise, determine , where . [You may use without proof that is irreducible.]