Paper 3, Section II, 37D

General Relativity
Part II, 2020

(a) Let (M,g)(\mathcal{M}, \boldsymbol{g}) be a four-dimensional spacetime and let T\boldsymbol{T} denote the rank (11)\left(\begin{array}{l}1 \\ 1\end{array}\right) tensor defined by

T:Tp(M)×Tp(M)R,(η,V)η(V),ηTp(M),VTp(M)\boldsymbol{T}: \mathcal{T}_{p}^{*}(\mathcal{M}) \times \mathcal{T}_{p}(\mathcal{M}) \rightarrow \mathbb{R}, \quad(\boldsymbol{\eta}, \boldsymbol{V}) \mapsto \boldsymbol{\eta}(\boldsymbol{V}), \quad \forall \boldsymbol{\eta} \in \mathcal{T}_{p}^{*}(\mathcal{M}), \quad \boldsymbol{V} \in \mathcal{T}_{p}(\mathcal{M})

Determine the components of the tensor T\boldsymbol{T} and use the general law for the transformation of tensor components under a change of coordinates to show that the components of T\boldsymbol{T} are the same in any coordinate system.

(b) In Cartesian coordinates (t,x,y,z)(t, x, y, z) the Minkowski metric is given by

ds2=dt2+dx2+dy2+dz2.d s^{2}=-d t^{2}+d x^{2}+d y^{2}+d z^{2} .

Spheroidal coordinates (r,θ,ϕ)(r, \theta, \phi) are defined through

x=r2+a2sinθcosϕy=r2+a2sinθsinϕz=rcosθ\begin{aligned} x &=\sqrt{r^{2}+a^{2}} \sin \theta \cos \phi \\ y &=\sqrt{r^{2}+a^{2}} \sin \theta \sin \phi \\ z &=r \cos \theta \end{aligned}

where a0a \geqslant 0 is a real constant.

(i) Show that the Minkowski metric in coordinates (t,r,θ,ϕ)(t, r, \theta, \phi) is given by

ds2=dt2+r2+a2cos2θr2+a2dr2+(r2+a2cos2θ)dθ2+(r2+a2)sin2θdϕ2d s^{2}=-d t^{2}+\frac{r^{2}+a^{2} \cos ^{2} \theta}{r^{2}+a^{2}} d r^{2}+\left(r^{2}+a^{2} \cos ^{2} \theta\right) d \theta^{2}+\left(r^{2}+a^{2}\right) \sin ^{2} \theta d \phi^{2}

(ii) Transform the metric ( \dagger ) to null coordinates given by u=tr,R=ru=t-r, R=r and show that /R\partial / \partial R is not a null vector field for a>0a>0.

(iii) Determine a new azimuthal angle φ=ϕF(R)\varphi=\phi-F(R) such that in the new coordinate system (u,R,θ,φ)(u, R, \theta, \varphi), the vector field /R\partial / \partial R is null for any a0a \geqslant 0. Write down the Minkowski metric in this new coordinate system.