Paper 1, Section II, 33C

Integrable Systems
Part II, 2020

(a) Show that if LL is a symmetric matrix (L=LT)\left(L=L^{T}\right) and BB is skew-symmetric (B=BT)\left(B=-B^{T}\right) then [B,L]=BLLB[B, L]=B L-L B is symmetric.

(b) Consider the real n×nn \times n symmetric matrix

L=(0a1000a10a2000a20a3000a300an200an20an100an10)L=\left(\begin{array}{cccccccc} 0 & a_{1} & 0 & 0 & \cdots & \cdots & \cdots & 0 \\ a_{1} & 0 & a_{2} & 0 & \cdots & \cdots & \cdots & 0 \\ 0 & a_{2} & 0 & a_{3} & \cdots & \cdots & \cdots & 0 \\ 0 & 0 & a_{3} & \cdots & \cdots & \cdots & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots & a_{n-2} & 0 \\ 0 & \cdots & \cdots & \cdots & \cdots & a_{n-2} & 0 & a_{n-1} \\ 0 & \cdots & \cdots & \cdots & \cdots & 0 & a_{n-1} & 0 \end{array}\right)

(i.e. Li,i+1=Li+1,i=aiL_{i, i+1}=L_{i+1, i}=a_{i} for 1in11 \leqslant i \leqslant n-1, all other entries being zero) and the real n×nn \times n skew-symmetric matrix

B=(00a1a200000a2a30a1a200000a2a30000an2an100000an2an100)B=\left(\begin{array}{cccccccc} 0 & 0 & a_{1} a_{2} & 0 & \cdots & \cdots & \cdots & 0 \\ 0 & 0 & 0 & a_{2} a_{3} & \cdots & \ldots & \ldots & 0 \\ -a_{1} a_{2} & 0 & 0 & 0 & \ldots & \ldots & \ldots & 0 \\ 0 & -a_{2} a_{3} & 0 & \ldots & \cdots & \ldots & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & \ldots & \ldots & \ldots & \ldots & \ldots & 0 & a_{n-2} a_{n-1} \\ 0 & \ldots & \cdots & \cdots & \cdots & 0 & 0 & 0 \\ 0 & \ldots & \cdots & \cdots & \ldots & -a_{n-2} a_{n-1} & 0 & 0 \end{array}\right)

(i.e. Bi,i+2=Bi+2,i=aiai+1B_{i, i+2}=-B_{i+2, i}=a_{i} a_{i+1} for 1in21 \leqslant i \leqslant n-2, all other entries being zero).

(i) Compute [B,L][B, L].

(ii) Assume that the aja_{j} are smooth functions of time tt so the matrix L=L(t)L=L(t) also depends smoothly on tt. Show that the equation dLdt=[B,L]\frac{d L}{d t}=[B, L] implies that

dajdt=f(aj1,aj,aj+1)\frac{d a_{j}}{d t}=f\left(a_{j-1}, a_{j}, a_{j+1}\right)

for some function ff which you should find explicitly.

(iii) Using the transformation aj=12exp[12uj]a_{j}=\frac{1}{2} \exp \left[\frac{1}{2} u_{j}\right] show that

dujdt=12(euj+1euj1)\frac{d u_{j}}{d t}=\frac{1}{2}\left(e^{u_{j+1}}-e^{u_{j-1}}\right)

for j=1,n1j=1, \ldots n-1. [Use the convention u0=,a0=0,un=,an=0.u_{0}=-\infty, a_{0}=0, u_{n}=-\infty, a_{n}=0 . ]

(iv) Deduce that given a solution of equation ( \dagger, there exist matrices {U(t)}tR\{U(t)\}_{t \in \mathbb{R}} depending on time such that L(t)=U(t)L(0)U(t)1L(t)=U(t) L(0) U(t)^{-1}, and explain how to obtain first integrals for (t)(t) from this.