Paper 1, Section II, I

Analysis of Functions
Part II, 2020

Let Rn\mathbb{R}^{n} be equipped with the σ\sigma-algebra of Lebesgue measurable sets, and Lebesgue measure.

(a) Given fL(Rn),gL1(Rn)f \in L^{\infty}\left(\mathbb{R}^{n}\right), g \in L^{1}\left(\mathbb{R}^{n}\right), define the convolution fgf \star g, and show that it is a bounded, continuous function. [You may use without proof continuity of translation on Lp(Rn)L^{p}\left(\mathbb{R}^{n}\right) for 1p<.]\left.1 \leqslant p<\infty .\right]

Suppose ARnA \subset \mathbb{R}^{n} is a measurable set with 0<A<0<|A|<\infty where A|A| denotes the Lebesgue measure of AA. By considering the convolution of f(x)=1A(x)f(x)=\mathbb{1}_{A}(x) and g(x)=1A(x)g(x)=\mathbb{1}_{A}(-x), or otherwise, show that the set AA={xy:x,yA}A-A=\{x-y: x, y \in A\} contains an open neighbourhood of 0 . Does this still hold if A=|A|=\infty ?

(b) Suppose that f:RnRmf: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} is a measurable function satisfying

f(x+y)=f(x)+f(y), for all x,yRnf(x+y)=f(x)+f(y), \quad \text { for all } x, y \in \mathbb{R}^{n}

Let Br={yRm:y<r}B_{r}=\left\{y \in \mathbb{R}^{m}:|y|<r\right\}. Show that for any ϵ>0\epsilon>0 :

(i) f1(Bϵ)f1(Bϵ)f1(B2ϵ)f^{-1}\left(B_{\epsilon}\right)-f^{-1}\left(B_{\epsilon}\right) \subset f^{-1}\left(B_{2 \epsilon}\right),

(ii) f1(Bkϵ)=kf1(Bϵ)f^{-1}\left(B_{k \epsilon}\right)=k f^{-1}\left(B_{\epsilon}\right) for all kNk \in \mathbb{N}, where for λ>0\lambda>0 and ARn,λAA \subset \mathbb{R}^{n}, \lambda A denotes the set {λx:xA}\{\lambda x: x \in A\}.

Show that ff is continuous at 0 and hence deduce that ff is continuous everywhere.