Paper 2, Section II, 33C
(i) Explain how the inverse scattering method can be used to solve the initial value problem for the equation
including a description of the scattering data associated to the operator , its time dependence, and the reconstruction of via the inverse scattering problem.
(ii) Solve the inverse scattering problem for the reflectionless case, in which the reflection coefficient is identically zero and the discrete scattering data consists of a single bound state, and hence derive the 1-soliton solution of .
(iii) Consider the direct and inverse scattering problems in the case of a small potential , with arbitrarily small: . Show that the reflection coefficient is given by
and verify that the solution of the inverse scattering problem applied to this reflection coefficient does indeed lead back to the potential when calculated to first order in