Paper 3, Section II, 32C

Integrable Systems
Part II, 2020

(a) Given a smooth vector field

V=V1(x,u)x+ϕ(x,u)uV=V_{1}(x, u) \frac{\partial}{\partial x}+\phi(x, u) \frac{\partial}{\partial u}

on R2\mathbb{R}^{2} define the prolongation of VV of arbitrary order NN.

Calculate the prolongation of order two for the group SO(2)S O(2) of transformations of R2\mathbb{R}^{2} given for sRs \in \mathbb{R} by

gs(ux)=(ucossxsinsusins+xcoss)g^{s}\left(\begin{array}{l} u \\ x \end{array}\right)=\left(\begin{array}{l} u \cos s-x \sin s \\ u \sin s+x \cos s \end{array}\right)

and hence, or otherwise, calculate the prolongation of order two of the vector field V=xu+uxV=-x \partial_{u}+u \partial_{x}. Show that both of the equations uxx=0u_{x x}=0 and uxx=(1+ux2)32u_{x x}=\left(1+u_{x}^{2}\right)^{\frac{3}{2}} are invariant under this action of SO(2)S O(2), and interpret this geometrically.

(b) Show that the sine-Gordon equation

2uXT=sinu\frac{\partial^{2} u}{\partial X \partial T}=\sin u

admits the group {gs}sR\left\{g^{s}\right\}_{s \in \mathbb{R}}, where

gs:(XTu)(esXesTu)g^{s}:\left(\begin{array}{c} X \\ T \\ u \end{array}\right) \mapsto\left(\begin{array}{c} e^{s} X \\ e^{-s} T \\ u \end{array}\right)

as a group of Lie point symmetries. Show that there is a group invariant solution of the form u(X,T)=F(z)u(X, T)=F(z) where zz is an invariant formed from the independent variables, and hence obtain a second order equation for w=w(z)w=w(z) where exp[iF]=w\exp [i F]=w.