Paper 1, Section II, I

Linear Analysis
Part II, 2020

(a) Define the dual space XX^{*} of a (real) normed space (X,)(X,\|\cdot\|). Define what it means for two normed spaces to be isometrically isomorphic. Prove that (l1)\left(l_{1}\right)^{*} is isometrically isomorphic to ll_{\infty}.

(b) Let p(1,)p \in(1, \infty). [In this question, you may use without proof the fact that (lp)\left(l_{p}\right)^{*} is isometrically isomorphic to lql_{q} where 1p+1q=1\frac{1}{p}+\frac{1}{q}=1.]

(i) Show that if {ϕm}m=1\left\{\phi_{m}\right\}_{m=1}^{\infty} is a countable dense subset of (lp)\left(l_{p}\right)^{*}, then the function

d(x,y):=m=12mϕm(xy)1+ϕm(xy)d(x, y):=\sum_{m=1}^{\infty} 2^{-m} \frac{\left|\phi_{m}(x-y)\right|}{1+\left|\phi_{m}(x-y)\right|}

defines a metric on the closed unit ball BlpB \subset l_{p}. Show further that for a sequence {x(n)}n=1\left\{x^{(n)}\right\}_{n=1}^{\infty} of elements x(n)Bx^{(n)} \in B, we have

ϕ(x(n))ϕ(x)ϕ(lp)d(x(n),x)0\phi\left(x^{(n)}\right) \rightarrow \phi(x) \quad \forall \phi \in\left(l_{p}\right)^{*} \quad \Leftrightarrow \quad d\left(x^{(n)}, x\right) \rightarrow 0

Deduce that (B,d)(B, d) is a compact metric space.

(ii) Give an example to show that for a sequence {x(n)}n=1\left\{x^{(n)}\right\}_{n=1}^{\infty} of elements x(n)Bx^{(n)} \in B and xBx \in B,

ϕ(x(n))ϕ(x)ϕ(lp)x(n)xlp0\phi\left(x^{(n)}\right) \rightarrow \phi(x) \quad \forall \phi \in\left(l_{p}\right)^{*} \quad \Rightarrow \quad\left\|x^{(n)}-x\right\|_{l_{p}} \rightarrow 0