Paper 2, Section II, I
Part II, 2020
(a) State and prove the Baire Category theorem.
Let . Apply the Baire Category theorem to show that . Give an explicit element of .
(b) Use the Baire Category theorem to prove that contains a function which is nowhere differentiable.
(c) Let be a real Banach space. Verify that the map sending to the function is a continuous linear map of into where denotes the dual space of . Taking for granted the fact that this map is an isometry regardless of the norm on , prove that if is another norm on the vector space which is not equivalent to , then there is a linear function which is continuous with respect to one of the two norms and not continuous with respect to the other.