Paper 1, Section I, 6B

Mathematical Biology
Part II, 2020

Consider a bivariate diffusion process with drift vector Ai(x)=aijxjA_{i}(\mathbf{x})=a_{i j} x_{j} and diffusion matrix bijb_{i j} where

aij=(1121),bij=(1001)a_{i j}=\left(\begin{array}{cc} -1 & 1 \\ -2 & -1 \end{array}\right), \quad b_{i j}=\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)

x=(x1,x2)\mathbf{x}=\left(x_{1}, x_{2}\right) and i,j=1,2i, j=1,2.

(i) Write down the Fokker-Planck equation for the probability P(x1,x2,t)P\left(x_{1}, x_{2}, t\right).

(ii) Plot the drift vector as a vector field around the origin in the region x1<1\left|x_{1}\right|<1, x2<1\left|x_{2}\right|<1.

(iii) Obtain the stationary covariances Cij=xixjC_{i j}=\left\langle x_{i} x_{j}\right\rangle in terms of the matrices aija_{i j} and bijb_{i j} and hence compute their explicit values.