Paper 2, Section I, 6B

Mathematical Biology
Part II, 2020

Consider the system of predator-prey equations

dN1dt=ϵ1N1+αN1N2dN2dt=ϵ2N2αN1N2\begin{aligned} &\frac{d N_{1}}{d t}=-\epsilon_{1} N_{1}+\alpha N_{1} N_{2} \\ &\frac{d N_{2}}{d t}=\epsilon_{2} N_{2}-\alpha N_{1} N_{2} \end{aligned}

where ϵ1,ϵ2\epsilon_{1}, \epsilon_{2} and α\alpha are positive constants.

(i) Determine the non-zero fixed point (N1,N2)\left(N_{1}^{*}, N_{2}^{*}\right) of this system.

(ii) Show that the system can be written in the form

dxidt=j=12KijHxj,i=1,2\frac{d x_{i}}{d t}=\sum_{j=1}^{2} K_{i j} \frac{\partial H}{\partial x_{j}}, \quad i=1,2

where xi=log(Ni/Ni)x_{i}=\log \left(N_{i} / N_{i}^{*}\right) and a suitable 2×22 \times 2 antisymmetric matrix KijK_{i j} and scalar function H(x1,x2)H\left(x_{1}, x_{2}\right) are to be identified.

(iii) Hence, or otherwise, show that HH is constant on solutions of the predator-prey equations.