Paper 1, Section II, 20G

Number Fields
Part II, 2020

State Minkowski's theorem.

Let K=Q(d)K=\mathbb{Q}(\sqrt{-d}), where dd is a square-free positive integer, not congruent to 3 (mod4).(\bmod 4) . Show that every nonzero ideal IOKI \subset \mathcal{O}_{K} contains an element α\alpha with

0<NK/Q(α)4dπN(I)0<\left|N_{K / \mathbb{Q}}(\alpha)\right| \leqslant \frac{4 \sqrt{d}}{\pi} N(I)

Deduce the finiteness of the class group of KK.

Compute the class group of Q(22)\mathbb{Q}(\sqrt{-22}). Hence show that the equation y3=x2+22y^{3}=x^{2}+22 has no integer solutions.