Paper 3, Section II, H

Analysis of Functions
Part II, 2021

(a) State the Riemann-Lebesgue lemma. Show that the Fourier transform maps S(Rn)\mathscr{S}\left(\mathbb{R}^{n}\right) to itself continuously.

(b) For some s0s \geqslant 0, let fL1(R3)Hs(R3)f \in L^{1}\left(\mathbb{R}^{3}\right) \cap H^{s}\left(\mathbb{R}^{3}\right). Consider the following system of equations for B:R3R3\mathbf{B}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}

B=f,×B=0\nabla \cdot \mathbf{B}=f, \quad \boldsymbol{\nabla} \times \mathbf{B}=\mathbf{0}

Show that there exists a unique B=(B1,B2,B3)\mathbf{B}=\left(B_{1}, B_{2}, B_{3}\right) solving the equations with BjB_{j} \in Hs+1(R3)H^{s+1}\left(\mathbb{R}^{3}\right) for j=1,2,3j=1,2,3. You need not find B\mathbf{B} explicitly, but should give an expression for the Fourier transform of BjB_{j}. Show that there exists a constant C>0C>0 such that

BjHs+1C(fL1+fHs),j=1,2,3\left\|B_{j}\right\|_{H^{s+1}} \leqslant C\left(\|f\|_{L^{1}}+\|f\|_{H^{s}}\right), \quad j=1,2,3

For what values of ss can we conclude that BjC1(Rn)B_{j} \in C^{1}\left(\mathbb{R}^{n}\right) ?