Paper 4 , Section II, 20G

Number Fields
Part II, 2021

(a) Compute the class group of K=Q(30)K=\mathbb{Q}(\sqrt{30}). Find also the fundamental unit of KK, stating clearly any general results you use.

[The Minkowski bound for a real quadratic field is dK1/2/2.\left|d_{K}\right|^{1 / 2} / 2 . ]

(b) Let K=Q(d)K=\mathbb{Q}(\sqrt{d}) be real quadratic, with embeddings σ1,σ2R\sigma_{1}, \sigma_{2} \hookrightarrow \mathbb{R}. An element αK\alpha \in K is totally positive if σ1(α)>0\sigma_{1}(\alpha)>0 and σ2(α)>0\sigma_{2}(\alpha)>0. Show that the totally positive elements of KK form a subgroup of the multiplicative group KK^{*} of index 4 .

Let I,JOKI, J \subset \mathcal{O}_{K} be non-zero ideals. We say that II is narrowly equivalent to JJ if there exists a totally positive element α\alpha of KK such that I=αJI=\alpha J. Show that this is an equivalence relation, and that the equivalence classes form a group under multiplication. Show also that the order of this group equals

{ the class number hK of K if the fundamental unit of K has norm 12hK otherwise. \begin{cases}\text { the class number } h_{K} \text { of } K & \text { if the fundamental unit of } K \text { has norm }-1 \\ 2 h_{K} & \text { otherwise. }\end{cases}