Paper 3, Section I, I

Number Theory
Part II, 2021

Define the continued fraction expansion of θR\theta \in \mathbb{R}, and show that this expansion terminates if and only if θQ\theta \in \mathbb{Q}.

Define the convergents (pn/qn)n1\left(p_{n} / q_{n}\right)_{n \geqslant-1} of the continued fraction expansion of θ\theta, and show that for all n0n \geqslant 0,

pnqn1pn1qn=(1)n1.p_{n} q_{n-1}-p_{n-1} q_{n}=(-1)^{n-1} .

Deduce that if θR\Q\theta \in \mathbb{R} \backslash \mathbb{Q}, then for all n0n \geqslant 0, at least one of

θpnqn<12qn2 and θpn+1qn+1<12qn+12\left|\theta-\frac{p_{n}}{q_{n}}\right|<\frac{1}{2 q_{n}^{2}} \quad \text { and } \quad\left|\theta-\frac{p_{n+1}}{q_{n+1}}\right|<\frac{1}{2 q_{n+1}^{2}}

must hold.

[You may assume that θ\theta lies strictly between pn/qnp_{n} / q_{n} and pn+1/qn+1p_{n+1} / q_{n+1} for all n0.n \geqslant 0 . ]