Paper 4, Section I, I

Number Theory
Part II, 2021

Let pp be a prime, and let N=(2nn)N=\left(\begin{array}{c}2 n \\ n\end{array}\right) for some positive integer nn.

Show that if a prime power pkp^{k} divides NN for some k1k \geqslant 1, then pk2np^{k} \leqslant 2 n.

Given a positive real xx, define ψ(x)=nxΛ(n)\psi(x)=\sum_{n \leqslant x} \Lambda(n), where Λ(n)\Lambda(n) is the von Mangoldt function, taking the value logp\log p if n=pkn=p^{k} for some prime pp and integer k1k \geqslant 1, and 0 otherwise. Show that

ψ(x)=px,p prime logxlogplogp\psi(x)=\sum_{p \leqslant x, p \text { prime }}\left\lfloor\frac{\log x}{\log p}\right\rfloor \log p

Deduce that for all integers n>1,ψ(2n)nlog2n>1, \psi(2 n) \geqslant n \log 2.