Let p be a prime, and let N=(2nn) for some positive integer n.
Show that if a prime power pk divides N for some k⩾1, then pk⩽2n.
Given a positive real x, define ψ(x)=∑n⩽xΛ(n), where Λ(n) is the von Mangoldt function, taking the value logp if n=pk for some prime p and integer k⩾1, and 0 otherwise. Show that
ψ(x)=p⩽x,p prime ∑⌊logplogx⌋logp
Deduce that for all integers n>1,ψ(2n)⩾nlog2.