Paper 4 , Section II, 40E
(a) Show that if and are real matrices such that both and are symmetric positive definite, then the spectral radius of is strictly less than
(b) Consider the Poisson equation (with zero Dirichlet boundary condition) on the unit square, where is some smooth function. Given and an equidistant grid on the unit square with stepsize , the standard five-point method is given by
where and . Equation can be written as a linear system , where and both depend on the chosen ordering of the grid points.
Use the result in part (a) to show that the Gauss-Seidel method converges for the linear system described above, regardless of the choice of ordering of the grid points.
[You may quote convergence results - based on the spectral radius of the iteration matrix - mentioned in the lecture notes.]