Paper 1, Section II, B

Applications of Quantum Mechanics
Part II, 2021

(a) Discuss the variational principle that allows one to derive an upper bound on the energy E0E_{0} of the ground state for a particle in one dimension subject to a potential V(x)V(x).

If V(x)=V(x)V(x)=V(-x), how could you adapt the variational principle to derive an upper bound on the energy E1E_{1} of the first excited state?

(b) Consider a particle of mass 2m=22 m=\hbar^{2} (in certain units) subject to a potential

V(x)=V0ex2 with V0>0V(x)=-V_{0} e^{-x^{2}} \quad \text { with } \quad V_{0}>0

(i) Using the trial wavefunction

ψ(x)=e12x2a\psi(x)=e^{-\frac{1}{2} x^{2} a}

with a>0a>0, derive the upper bound E0E(a)E_{0} \leqslant E(a), where

E(a)=12aV0a1+aE(a)=\frac{1}{2} a-V_{0} \frac{\sqrt{a}}{\sqrt{1+a}}

(ii) Find the zero of E(a)E(a) in a>0a>0 and show that any extremum must obey

(1+a)3=V02a.(1+a)^{3}=\frac{V_{0}^{2}}{a} .

(iii) By sketching E(a)E(a) or otherwise, deduce that there must always be a minimum in a>0a>0. Hence deduce the existence of a bound state.

(iv) Working perturbatively in 0<V010<V_{0} \ll 1, show that

V0<E012V02+O(V03)-V_{0}<E_{0} \leqslant-\frac{1}{2} V_{0}^{2}+\mathcal{O}\left(V_{0}^{3}\right)

[Hint: You may use that ebx2dx=πb\int_{-\infty}^{\infty} e^{-b x^{2}} d x=\sqrt{\frac{\pi}{b}} for b>0.]\left.b>0 .\right]