Let X be an n×p non-random design matrix and Y be a n-vector of random responses. Suppose Y∼N(μ,σ2I), where μ is an unknown vector and σ2>0 is known.
(a) Let λ⩾0 be a constant. Consider the ridge regression problem
β^λ=argβmin∥Y−Xβ∥2+λ∥β∥2.
Let μ^λ=Xβ^λ be the fitted values. Show that μ^λ=HλY, where
Hλ=X(XTX+λI)−1XT
(b) Show that
E(∥Y−μ^λ∥2)=∥(I−Hλ)μ∥2+{n−2trace(Hλ)+trace(Hλ2)}σ2
(c) Let Y∗=μ+ϵ∗, where ϵ∗∼N(0,σ2I) is independent of Y. Show that ∥Y−μ^λ∥2+2σ2trace(Hλ) is an unbiased estimator of E(∥Y∗−μ^λ∥2).
(d) Describe the behaviour (monotonicity and limits) of E(∥Y∗−μ^λ∥2) as a function of λ when p=n and X=I. What is the minimum value of E(∥Y∗−μ^λ∥2) ?