Paper 2, Section II, 37C37 \mathrm{C}

Statistical Physics
Part II, 2021

(a) What systems are described by microcanonical, canonical and grand canonical ensembles? Under what conditions is the choice of ensemble irrelevant?

(b) In a simple model a meson consists of two quarks bound in a linear potential, U(r)=αrU(\mathbf{r})=\alpha|\mathbf{r}|, where r\mathbf{r} is the relative displacement of the two quarks and α\alpha is a positive constant. You are given that the classical (non-relativistic) Hamiltonian for the meson is

H(P,R,p,r)=P22M+p22μ+αrH(\mathbf{P}, \mathbf{R}, \mathbf{p}, \mathbf{r})=\frac{|\mathbf{P}|^{2}}{2 M}+\frac{|\mathbf{p}|^{2}}{2 \mu}+\alpha|\mathbf{r}|

where M=2mM=2 m is the total mass, μ=m/2\mu=m / 2 is the reduced mass, P\mathbf{P} is the total momentum, p=μdr/dt\mathbf{p}=\mu d \mathbf{r} / d t is the internal momentum, and R\mathbf{R} is the centre of mass position.

(i) Show that the partition function for a single meson in thermal equilibrium at temperature TT in a three-dimensional volume VV can be written as Z1=Ztrans Zint Z_{1}=Z_{\text {trans }} Z_{\text {int }}, where

Ztrans =V(2π)3d3PeβP2/(2M),Zint =1(2π)3d3rd3peβp2/(2μ)eβαrZ_{\text {trans }}=\frac{V}{(2 \pi \hbar)^{3}} \int d^{3} P e^{-\beta|\mathbf{P}|^{2} /(2 M)}, \quad Z_{\text {int }}=\frac{1}{(2 \pi \hbar)^{3}} \int d^{3} r d^{3} p e^{-\beta|\mathbf{p}|^{2} /(2 \mu)} e^{-\beta \alpha|\mathbf{r}|}

and β=1/(kBT)\beta=1 /\left(k_{\mathrm{B}} T\right)

Evaluate Ztrans Z_{\text {trans }} and evaluate Zint Z_{\text {int }} in the large-volume limit (βαV1/31)\left(\beta \alpha V^{1 / 3} \gg 1\right).

What is the average separation of the quarks within the meson at temperature TT ?

[\left[\right. You may assume that ecx2dx=π/c\int_{-\infty}^{\infty} e^{-c x^{2}} d x=\sqrt{\pi / c} for c>0c>0 ]

(ii) Now consider an ideal gas of NN such mesons in a three-dimensional volume VV.

Calculate the total partition function of the gas.

What is the heat capacity CV?C_{V} ?