Paper 2, Section II, 30K
Consider a one-period market model with risky assets and one risk-free asset. Let denote the vector of prices of the risky assets at time and let be the interest rate.
(a) What does it mean to say a portfolio is an arbitrage for this market?
(b) An investor wishes to maximise their expected utility of time-1 wealth attainable by investing in the market with their time- 0 wealth . The investor's utility function is increasing and concave. Show that, if there exists an optimal solution to the investor's expected utility maximisation problem, then the market has no arbitrage. [Assume that is integrable for any attainable time-1 wealth .]
(c) Now introduce a contingent claim with time-1 bounded payout . How does the investor in part (b) calculate an indifference bid price for the claim? Assuming each such claim has a unique indifference price, show that the map is concave. [Assume that any relevant utility maximisation problem that you consider has an optimal solution.]
(d) Consider a contingent claim with time-1 bounded payout . Let be the set of initial no-arbitrage prices for the claim; that is, the set consists of all such that the market augmented with the contingent claim with time- 0 price has no arbitrage. Show that . [Assume that any relevant utility maximisation problem that you consider has an optimal solution. You may use results from lectures without proof, such as the fundamental theorem of asset pricing or the existence of marginal utility prices, as long as they are clearly stated.]