Paper 3, Section II, 29K

Stochastic Financial Models
Part II, 2021

(a) Let M=(Mn)n0M=\left(M_{n}\right)_{n \geqslant 0} be a martingale and M^=(M^n)n0\hat{M}=\left(\hat{M}_{n}\right)_{n \geqslant 0} a supermartingale. If M0=M^0M_{0}=\hat{M}_{0}, show that E(MT)E(M^T)\mathbb{E}\left(M_{T}\right) \geqslant \mathbb{E}\left(\hat{M}_{T}\right) for any bounded stopping time TT. [If you use a general result about supermartingales, you must prove it.]

(b) Consider a market with one stock with time- nn price SnS_{n} and constant interest rate rr. Explain why a self-financing investor's wealth process (Xn)n0\left(X_{n}\right)_{n \geqslant 0} satisfies

Xn=(1+r)Xn1+θn[Sn(1+r)Sn1]X_{n}=(1+r) X_{n-1}+\theta_{n}\left[S_{n}-(1+r) S_{n-1}\right]

where θn\theta_{n} is the number of shares of the stock held during the nnth period.

(c) Given an initial wealth X0X_{0}, an investor seeks to maximize E[U(XN)]\mathbb{E}\left[U\left(X_{N}\right)\right], where UU is a given utility function. Suppose the stock price is such that Sn=Sn1ξnS_{n}=S_{n-1} \xi_{n}, where (ξn)n1\left(\xi_{n}\right)_{n \geqslant 1} is a sequence of independent copies of a random variable ξ\xi. Let VV be defined inductively by

V(n1,x)=suptRE[V(n,(1+r)x+t(1+rξ))]V(n-1, x)=\sup _{t \in \mathbb{R}} \mathbb{E}[V(n,(1+r) x+t(1+r-\xi))]

with terminal condition V(N,x)=U(x)V(N, x)=U(x) for all xRx \in \mathbb{R}.

Show that the process (V(n,Xn))0nN\left(V\left(n, X_{n}\right)\right)_{0 \leqslant n \leqslant N} is a supermartingale for any trading strategy (θn)1nN\left(\theta_{n}\right)_{1 \leqslant n \leqslant N}. Suppose that the trading strategy (θn)1nN\left(\theta_{n}^{*}\right)_{1 \leqslant n \leqslant N} with corresponding wealth process (Xn)0nN\left(X_{n}^{*}\right)_{0 \leqslant n \leqslant N} are such that the process (V(n,Xn))0nN\left(V\left(n, X_{n}^{*}\right)\right)_{0 \leqslant n \leqslant N} is a martingale. Show that (θn)1nN\left(\theta_{n}^{*}\right)_{1 \leqslant n \leqslant N} is optimal.