Paper 4, Section II, 29K

Stochastic Financial Models
Part II, 2021

(a) What does it mean to say that a stochastic process is a Brownian motion? Show that, if (Wt)t0\left(W_{t}\right)_{t \geqslant 0} is a continuous Gaussian process such that E(Wt)=0\mathbb{E}\left(W_{t}\right)=0 and E(WsWt)=s\mathbb{E}\left(W_{s} W_{t}\right)=s for all 0st0 \leqslant s \leqslant t, then (Wt)t0\left(W_{t}\right)_{t \geqslant 0} is a Brownian motion.

For the rest of the question, let (Wt)t0\left(W_{t}\right)_{t \geqslant 0} be a Brownian motion.

(b) Let W^0=0\widehat{W}_{0}=0 and W^t=tW1/t\widehat{W}_{t}=t W_{1 / t} for t>0t>0. Show that (W^t)t0\left(\widehat{W}_{t}\right)_{t \geqslant 0} is a Brownian motion. [You may use without proof the Brownian strong law of large numbers: Wt/t0W_{t} / t \rightarrow 0 almost surely as tt \rightarrow \infty.]

(c) Fix constants cRc \in \mathbb{R} and T>0T>0. Show that

E[f((Wt+ct)0tT)]=E[exp(cWT12c2T)f((Wt)0tT)]\mathbb{E}\left[f\left(\left(W_{t}+c t\right)_{0 \leqslant t \leqslant T}\right)\right]=\mathbb{E}\left[\exp \left(c W_{T}-\frac{1}{2} c^{2} T\right) f\left(\left(W_{t}\right)_{0 \leqslant t \leqslant T}\right)\right]

for any bounded function f:C[0,T]Rf: C[0, T] \rightarrow \mathbb{R} of the form

f(ω)=g(ω(t1),,ω(tn)),f(\omega)=g\left(\omega\left(t_{1}\right), \ldots, \omega\left(t_{n}\right)\right),

for some fixed gg and fixed 0<t1<<tn=T0<t_{1}<\ldots<t_{n}=T, where C[0,T]C[0, T] is the space of continuous functions on [0,T][0, T]. [If you use a general theorem from the lectures, you should prove it.]

(d) Fix constants xRx \in \mathbb{R} and T>0T>0. Show that

E[f((Wt+x)tT)]=E[exp((x/T)WT12(x2/T))f((Wt)tT)]\mathbb{E}\left[f\left(\left(W_{t}+x\right)_{t \geqslant T}\right)\right]=\mathbb{E}\left[\exp \left((x / T) W_{T}-\frac{1}{2}\left(x^{2} / T\right)\right) f\left(\left(W_{t}\right)_{t \geqslant T}\right)\right]

for any bounded function f:C[T,)Rf: C[T, \infty) \rightarrow \mathbb{R}. [In this part you may use the Cameron-Martin theorem without proof.]