Paper 2, Section II, H

Topics in Analysis
Part II, 2021

Let r:[1,1]Rr:[-1,1] \rightarrow \mathbb{R} be a continuous function with r(x)>0r(x)>0 for all but finitely many values of xx.

(a) Show that

u,v=11u(x)v(x)r(x)dx\langle u, v\rangle=\int_{-1}^{1} u(x) v(x) r(x) d x

defines an inner product on C([1,1])C([-1,1]).

(b) Show that for each nn there exists a polynomial PnP_{n} of degree exactly nn which is orthogonal, with respect to the inner product ()(*), to all polynomials of lower degree.

(c) Show that PnP_{n} has nn simple zeros ω1(n),ω2(n),,ωn(n)\omega_{1}(n), \omega_{2}(n), \ldots, \omega_{n}(n) on [1,1][-1,1].

(d) Show that for each nn there exist unique real numbers Aj(n),1jnA_{j}(n), 1 \leqslant j \leqslant n, such that whenever QQ is a polynomial of degree at most 2n12 n-1,

11Q(x)r(x)dx=j=1nAj(n)Q(ωj(n))\int_{-1}^{1} Q(x) r(x) d x=\sum_{j=1}^{n} A_{j}(n) Q\left(\omega_{j}(n)\right)

(e) Show that

j=1nAj(n)f(ωj(n))11f(x)r(x)dx\sum_{j=1}^{n} A_{j}(n) f\left(\omega_{j}(n)\right) \rightarrow \int_{-1}^{1} f(x) r(x) d x

as nn \rightarrow \infty for all fC([1,1])f \in C([-1,1]).

(f) If R>1,K>0,amR>1, K>0, a_{m} is real with amKRm\left|a_{m}\right| \leqslant K R^{-m} and f(x)=m=1amxmf(x)=\sum_{m=1}^{\infty} a_{m} x^{m}, show that

11f(x)r(x)dxj=1nAj(n)f(ωj(n))2KR2n+1R111r(x)dx\left|\int_{-1}^{1} f(x) r(x) d x-\sum_{j=1}^{n} A_{j}(n) f\left(\omega_{j}(n)\right)\right| \leqslant \frac{2 K R^{-2 n+1}}{R-1} \int_{-1}^{1} r(x) d x

(g) If r(x)=(1x2)1/2r(x)=\left(1-x^{2}\right)^{1 / 2} and Pn(0)=1P_{n}(0)=1, identify PnP_{n} (giving brief reasons) and the ωj(n)\omega_{j}(n). [Hint: A change of variable may be useful.]