Paper 4, Section II, H

Topics in Analysis
Part II, 2021

Let xx be irrational with nnth continued fraction convergent

pnqn=a0+1a1+1a2+1a3+1an1+1an\frac{p_{n}}{q_{n}}=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{a_{n-1}+\frac{1}{a_{n}}}}}}

Show that

(pnpn1qnqn1)=(a0110)(a1110)(an1110)(an110)\left(\begin{array}{cc} p_{n} & p_{n-1} \\ q_{n} & q_{n-1} \end{array}\right)=\left(\begin{array}{cc} a_{0} & 1 \\ 1 & 0 \end{array}\right)\left(\begin{array}{cc} a_{1} & 1 \\ 1 & 0 \end{array}\right) \cdots\left(\begin{array}{cc} a_{n-1} & 1 \\ 1 & 0 \end{array}\right)\left(\begin{array}{cc} a_{n} & 1 \\ 1 & 0 \end{array}\right)

and deduce that

pnqnx1qnqn+1.\left|\frac{p_{n}}{q_{n}}-x\right| \leqslant \frac{1}{q_{n} q_{n+1}} .

[You may quote the result that xx lies between pn/qnp_{n} / q_{n} and pn+1/qn+1p_{n+1} / q_{n+1} \cdot ]

We say that yy is a quadratic irrational if it is an irrational root of a quadratic equation with integer coefficients. Show that if yy is a quadratic irrational, we can find an M>0M>0 such that

pqyMq2\left|\frac{p}{q}-y\right| \geqslant \frac{M}{q^{2}}

for all integers pp and qq with q>0q>0.

Using the hypotheses and notation of the first paragraph, show that if the sequence (an)\left(a_{n}\right) is unbounded, xx cannot be a quadratic irrational.