Paper 3, Section II, 39A

Waves
Part II, 2021

Consider a two-dimensional stratified fluid of sufficiently slowly varying background density ρb(z)\rho_{b}(z) that small-amplitude vertical-velocity perturbations w(x,z,t)w(x, z, t) can be assumed to satisfy the linear equation

2(2wt2)+N2(z)2wx2=0, where N2=gρ0dρbdz\nabla^{2}\left(\frac{\partial^{2} w}{\partial t^{2}}\right)+N^{2}(z) \frac{\partial^{2} w}{\partial x^{2}}=0, \quad \text { where } N^{2}=\frac{-g}{\rho_{0}} \frac{d \rho_{b}}{d z}

and ρ0\rho_{0} is a constant. The background density profile is such that N2N^{2} is piecewise constant with N2=N02>0N^{2}=N_{0}^{2}>0 for z>L|z|>L and with N2=0N^{2}=0 in a layer z<L|z|<L of uniform density ρ0\rho_{0}.

A monochromatic internal wave of amplitude AIA_{I} is incident on the intermediate layer from z=z=-\infty, and produces velocity perturbations of the form

w(x,z,t)=w^(z)ei(kxωt)w(x, z, t)=\widehat{w}(z) e^{i(k x-\omega t)}

where k>0k>0 and 0<ω<N00<\omega<N_{0}.

(a) Show that the vertical variations have the form

w^(z)={AIexp[im(z+L)]+ARexp[im(z+L)] for z<LBCcoshkz+BSsinhkz for z<LATexp[im(zL)] for z>L\widehat{w}(z)= \begin{cases}A_{I} \exp [-i m(z+L)]+A_{R} \exp [i m(z+L)] \quad \text { for } z<-L \\ B_{C} \cosh k z+B_{S} \sinh k z & \text { for }|z|<L \\ A_{T} \exp [-i m(z-L)] & \text { for } z>L\end{cases}

where AR,BC,BSA_{R}, B_{C}, B_{S} and ATA_{T} are (in general) complex amplitudes and

m=kN02ω21m=k \sqrt{\frac{N_{0}^{2}}{\omega^{2}}-1}

In particular, you should justify the choice of signs for the coefficients involving mm.

(b) What are the appropriate boundary conditions to impose on w^\widehat{w}at z=±Lz=\pm L to determine the unknown amplitudes?

(c) Apply these boundary conditions to show that

ATAI=2imk2imkcosh2α+(k2m2)sinh2α,\frac{A_{T}}{A_{I}}=\frac{2 i m k}{2 i m k \cosh 2 \alpha+\left(k^{2}-m^{2}\right) \sinh 2 \alpha},

where α=kL\alpha=k L.

(d) Hence show that

ATAI2=[1+(sinh2αsin2ψ)2]1\left|\frac{A_{T}}{A_{I}}\right|^{2}=\left[1+\left(\frac{\sinh 2 \alpha}{\sin 2 \psi}\right)^{2}\right]^{-1}

where ψ\psi is the angle between the incident wavevector and the downward vertical.