Paper 1, Section I, F

Automata and Formal Languages
Part II, 2021

Let fn,kf_{n, k} be the partial function on kk variables that is computed by the nnth machine (or the empty function if nn does not encode a machine).

Define the halting set K\mathbb{K}.

Given A,BNA, B \subseteq \mathbb{N}, what is a many-one reduction AmBA \leqslant_{m} B of AA to BB ?

State the smns-m-n theorem and use it to show that a subset XX of N\mathbb{N} is recursively enumerable if and only if XmKX \leqslant_{m} \mathbb{K}.

Give an example of a set SNS \subseteq \mathbb{N} with KmS\mathbb{K} \leqslant_{m} S but KS\mathbb{K} \neq S.

[You may assume that K\mathbb{K} is recursively enumerable and that 0K0 \notin \mathbb{K}.]