Paper 2, Section I, D
Part II, 2021
Show that, in a uniform gravitational field, the net gravitational torque on a system of particles, about its centre of mass, is zero.
Let be an inertial frame of reference, and let be the frame of reference with the same origin and rotating with angular velocity with respect to . You may assume that the rates of change of a vector observed in the two frames are related by
Derive Euler's equations for the torque-free motion of a rigid body.
Show that the general torque-free motion of a symmetric top involves precession of the angular-velocity vector about the symmetry axis of the body. Determine how the direction and rate of precession depend on the moments of inertia of the body and its angular velocity.